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D,-Like Dopamine Receptor Mediation of

Social-Emotional Reactivity

in a Mouse Model

of Anxiety: Strain and Experience Effects
Paul L. Gendreau, Ph.D., John M. Petitto, M.D., Jean-Louis Gariépy, Ph.D., and Mark H. Lewis, Ph.D.

We examined the effects of the D-like dopamine receptor
agonist quinpirole on social-emotional reactivity in two
inbred mouse strains. An important objective of this study
was to determine whether these effects could be modulated
by differential housing conditions (i.e., isolation versus
group housing). Moreover, as motor activity is an
important control for the assessment of drug effects on
emotional behavior, the effects of quinpirole were tested in
two inbred mouse strains (A/] and C57BL/6]) low and high
in motor activity, respectively. Levels of emotional
reactivity were assessed in response to mild social
stimulation provided by a nonaggressive conspecific.
Quinpirole increased stationary forms of reactivity (i.e.,
startle, kicking, defensive posture, vocalization) in both
isolated and group-housed A/] mice. This effect was more
pronounced and observed at lower doses in isolated than in
group-housed A/] mice. Quinpirole al<o induced jump
behavior in isolated but not group-housed A/J mice. The
shift to the left in the dose-response curve of quinpirole in

isolated A/] mice indicated that D,-like dopamine receptor
functions can be altered by social experience. Quinpirole
only marginally increased stationary and locomotor
reactivity (i.e., jump) in isolated C57BL/6] mice, whereas it
markedly reduced motor activity in group-housed mice of
this strain. The investigation of emotional reactivity within
a social context and using strains that differ in motor
activity permitted the effects of drugs on emotional
reactivity to be dissociated from the effects on motor
activity. Given that social-emotional reactivity was elicited
by what typically should have been mild and
nonthreatening stimuli, this model may be highly relevant
to understanding the neurobiology of anxiety. Finally, these
data support an important role for dopamine in the
mediation of social-emotional reactivity.
[Neuropsychopharmacology 18:210-221, 1998]
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Fear refers to a constellation of motor-behavioral, phys-
iological, endocrinological, and neurochemical pat-
terns that may be produced in response to threatening
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and potentially harmful situations. Although fear gen-
erally constitutes a normal and adaptive emotional re-
sponse designed to protect the individual from pain
and injury, excessive, persistent, or unrealistic fear (e.g.,
panic, phobia) may have important detrimental conse-
quences upon the individual’s health and social-emo-
tional development (Kagan et al. 1988). The study of
fear and related constructs (e.g., anxiety, emotionality)
has relied on various rodent models (for a review, see
File 1987; Lister 1990). These models generally consist
of an animal’s response to bright or open space (e.g.,
open field, elevated plus-maze, light-dark transition
test) or to stimuli that have been associated with pain or
discomfort (e.g., fear-potentiated startle, Geller-Seifter
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conflict test). Fear assessment has also been conducted
within contexts involving a predator (Blanchard et al.
1993; Griebel et al. 1995) or an aggressive conspecific
(Puglisi-Allegra and Cabib 1988). Compared with soli-
tary test situations that typically induce a limited set of
behavioral responses (e.g., defecation, freezing), social
situations involving a predator or a conspecific can gen-
erate a wider variety of defensive or fear-mediated be-
haviors such as escape, upright and sideways defensive
postures, vocalization, freezing, and social withdrawal.
Thus, social contexts or paradigms may be particularly
useful for the investigation of drug effects on specific
behavioral patterns associated with fear or anxiety.

Studies of the neurochemical mechanisms underly-
ing the behavioral and physiological patterns related to
fear and anxiety have indicated a variety of neuromod-
ulators interacting at various levels in the central ner-
vous system. Particular attention has been given to the
benzodiazepine, noradrenergic, and serotonergic sys-
tems, which have been shown to modulate fear and
anxiety in a variety of test situations (File 1996; Shep-
hard 1986). In contrast, little attention has been directed
toward the dopaminergic system. This is somewhat
surprising given that dopamine is known to mediate
the motor, endocrine, and cognitive responses associ-
ated with stressful or aversive stimuli (LeMoal and Si-
mon 1991; Salamone 1994). Dopamine has also been
found to regulate certain psychiatric disorders associ-
ated with social-emotional disturbances (Carlsson 1988;
Seeman 1994; Waddington 1993). Furthermore, similar
to the effects of benzodiazepines and other well-estab-
lished anxiolytic compounds, the D,-like receptor an-
tagonist sulpiride was found to reduce anxiety-like ac-
tivity in various solitary test situations, including the
light-dark transition test (Costall et al. 1987; Pich and
Samanin 1986), the elevated-plus maze (Rodgers et al.
1994), and the conflict test as well (Pich and Saminin
1986). Sulpiride also decreased defensive behavior in
mice confronted with an aggressive conspecific (Puglisi-
Allegra and Cabib 1988). Conversely, the prototypical
D, agonist quinpirole has been reported to increase de-
fensiveness in mice interacting with an unfamiliar and
nonaggressive conspecific (Cabib and Puglisi-Allegra
1989; Gao and Cutler 1993; Puglisi-Allegra and Cabib
1988). Quinpirole, however, was found ineffective in in-
ducing anxiety in the elevated plus-maze (Rodgers et al.
1994), suggesting a specific role for D,-like dopamine
receptors in mediating fear or anxiety-like response to
social stimuli.

Fear expression and the effects of dopaminergic
compounds on these behavioral measures can be al-
tered significantly by varying the level of environmen-
tal stimulation provided during development. For in-
stance, animals that have been socially isolated are
generally more fearful than animals reared in groups.
This outcome has been documented in a variety of situ-
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ations and animal species, including fish (Davis 1975),
chicks (Jones and Waddington 1992), ducks (Melzack et
al. 1959), mice (Gendreau et al. 1997; Krsiak 1975), rats
(Wright et al. 1990), dogs (Melzack 1969), as well as
nonhuman primates (Mason and Green 1962; Suomi
1987). Evidence has now accumulated indicating that
social isolation produces alterations in dopaminergic
function. When compared to group-housed animals,
isolated animals have been characterized by enhanced
sensitivity to the stereotypic and motor effects of
d-amphetamine and apomorphine (Ahmed et al. 1995;
Guisado et al. 1980; Jones et al. 1990, 1992; Lewis et al.
1990; Sahakian et al. 1975; Wilmot et al. 1984, 1986). The
effects of d-amphetamine on acoustic startle response
have also been found to be greater in isolated animals
(Kokkinidis and MacNeill 1982). To what extent activa-
tion of D|-like vs. D,-like dopamine receptors contributes
to the enhanced behavioral effects of mixed dopamine
agonists in isolated animals has not yet been estab-
lished. As D;/D, interactions are required for the ex-
pression of a number of behaviors (Carlson et al. 1987;
Waddington and Daly 1993), evidence indicates that
both D;-like (Gariépy et al. 1998, in press; Lewis et al.
1994) and D,-like dopamine receptor functions (Guisado
et al. 1980) can be altered by isolation housing.

The parameters of the test situation and rearing con-
ditions are not the only determining factors for the
expression of fear and for the effects of drugs on its
behavioral correlates. Significant variations in fear re-
sponse (Rex et al. 1996; Shanks and Anisman 1988; Trullas
and Skolnick 1993) and in the effects of dopaminergic
compounds on emotional (Cabib and Puglisi-Allegra
1989; Gendreau et al. 1997; Nikulina and Klimek 1993)
and motor behavior (Fink and Reis 1981; Seale et al.
1984; Skrinskaya et al. 1992) have been found among rat
and mouse strains. In this regard, we found that drugs
acting selectively at the D, receptor subtype primarily
altered the expression of locomotor forms of social-emo-
tional reactivity (e.g., escape and jump) in high-motor
activity C57BL/6] mice, whereas it had little effect in
low-motor activity A/] mice (Gendreau et al. 1997). In
this strain, however, social-emotional reactivity was in-
creased by dihydrexidine, a dopamine agonist showing
only a 10-fold selectivity for D, versus D,-like receptors,
suggesting a potential role for the D, receptor subtype in
mediating emotional reactivity in A/} mice.

The present study was therefore designed to exam-
ine the effects of the D,-like dopamine receptor agonist
quinpirole on social-emotional behavior in A/] and
C57BL/6] mice that have been reared in social isolation
or in groups. Previous studies have shown that quin-
pirole significantly increased escape, defensive posture,
freezing while decreasing social investigation in group-
housed C57BL/6 mice exposed to an unfamiliar conspe-
cific (Cabib and Puglisi-Allegra 1989; Puglisi-Allegra and
Cabib 1988). It was hypothesized that isolation housing
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would result in a shift to the left in the dose-response
curve for quinpirole, the effects of the dopamine ago-
nist expected to be greater in mice reared in isolation
than in mice reared in groups. Furthermore, as sug-
gested by our previous findings, quinpirole was ex-
pected to be particularly effective in inducing social-
emotional reactivity in A/J mice.

MATERIALS AND METHODS
Animals

Mice from the A (n = 56) and C57BL/6 (n = 40) strains
(Jackson Laboratories, Bar Harbor, ME) that were to be
isolated arrived in our facilities at 21 days of age. The
day after, mice were individually housed in clear plas-
tic cages (29 X 18 X 13 cm) for 5 weeks. Six-week-old
group-housed mice of the A (n = 18) and C57BL/6 (n =
17) strains were obtained from the same vendor 2
weeks before testing. Animals were kept in groups of
four or five. All animals had access to food and water
ad libitum and were kept on a 12:12-h light-dark cycle
in a temperature-controlled room (23°C). Animals were
left undisturbed in their home cage except for cage and
bedding replacement. Group housad, untreated C3H/
HeNH mice (Sprague Dawley, IN) of similar age and
weight were used as social partners. This strain was se-
lected, as our previous studies have shown these mice
to provide adequate levels of social stimulation without
being aggressive. Each partner was used approximately
twice for testing but never on the same day.

Social Interaction Test

After injection, mice were returned to their home cage
for 10 min. The test mouse was then confined to one-
half of a Plexiglas chamber (21 X 30 X 30 cm) while a
group-housed, untreated C3H/HeNH partner mouse
was placed into the other half of the chamber. A metal
panel that prevented the animals from being in contact
was removed after a 5-min acclimation period. The so-
cial interactions were coded for 5 min by an observer
who was unaware of assignment to housing and drug
conditions and who had attained a high level of reliabil-
ity with other certified observers in previous experi-
ments (Gariépy et al. 1995; Lewis et al. 1994). Behavioral
categories included vocalization, kicking, startle, defen-
sive posture (upright and sideways), jump, escape, so-
cial investigation, and aggression (i.e., fight, bite, feint,
and aggressive grooming). In addition, the intensity of
escape behavior was determined by counting the num-
ber of times the subject crossed the midline of the test-
ing chamber during an escape behavior (until the next
social contact or within a 5-s period after the social con-
tact). This measure has been shown to be a sensitive in-
dex in assessing strain and drugs effects on escape be-
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havior (Gendreau et al. 1997). Testing was conducted in
a dimly illuminated room within the first 4 h of the dark
cycle. All aspects of the present study were conducted
within NIH guidelines for animal research and were
approved by the Institutional Animal Care and Use
Committee (IACUC) at the University of Florida.

Drug

Quinpirole [(-) trans (4aR,8aR)-4,4a,5,6,7,8,8a,9-octahy-
dro-5-propyl-1H-pyrazolo [3,4-g] quinoline HCI] was
dissolved in a 0.1% solution of ascorbic acid. Mice were
administered 0, 3.0, or 6.0 mg/kg. Given that isolation
was expected to produce a shift to the left in the dose-
response curve, an additional dose of 1.0 mg/kg was
given to isolated mice only. Injections were made sub-
cutaneously 15 min before testing (including the 5-min
acclimation period). Raclopride [(5)-3,5-dichloro-N-[(1-
ethyl-2-pyrrolidinyl)methyl]-2-hydroxy-6methoxy-ben-
zamide [-tartrate] was dissolved in distilled water and
injected (5.0 mg/kg) subcutaneously 15 min before
quinpirole administration. Both drugs were injected in
a volume of 4 to 8 ml/kg body weight.

Statistical Analyses

As in previous studies, all behavioral categories except
social investigation were expressed as frequency per
number of interactions to control for strain differences
in the number of contacts with the partner mouse as
well as for variations in the number of social contacts
attributed to housing and drug conditions. Social inves-
tigation was expressed as total frequency over the
whole test. Strain and housing effects were analyzed in
vehicle-treated mice using a 2 (strains) X 2 (housing
conditions) ANOVA. The effects of quinpirole were an-
alyzed separately in isolated and group-housed mice
with a 2 (strains) X 4 (doses, 0, 1.0, 3.0, 6.0 mg/kg) and
a 2 (strains) X 3 (doses, 0, 3.0, 6.0 mg/kg) ANOVAs, re-
spectively, followed if necessary by Duncan muitiple
range tests.

RESULTS

Strain and Housing Differences in
Social-Emotional Behavior

Strain and housing differences in social-emotional reac-
tivity were assessed by analyzing the behavior of vehi-
cle-treated mice. Significant main effects for strain were
obtained for several categories. Specifically, low-loco-
motor activity A/J] mice were significantly more likely
to freeze (F (1, 28) = 21.11, p < .001), startle (F (1, 28) =
5.72, p < .05), and kick (F (1, 28) = 8.49, p < .01) in re-
sponse to social contact than C57BL/6] mice. Con-
versely, high-locomotor activity C57BL/6J mice showed
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Figure 1. Strain differences and effects
of isolation housing on stationary (i.e.,
startle, kicking, vocalization, defensive
posture, and freezing) and locomotor
(i.e., jump and escape) reactivity in A/]
and C57BL/6] mice (mean and SEM).
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a greater tendency to escape from the partner mouse
than did A/J mice. This difference was significant re-
garding the intensity of escape, that is, the number of
times the subject crossed the midline of the chamber
while escaping away from the conspecific (F (1, 28) =
3.42, p = .075). Figure 1 summarizes the strain differ-
ences in stationary reactivity (i.e., freezing, kicking,
startle, defensive posture, vocalization) versus locomo-
tor reactivity (i.e., jump, escape). C57BL/6] mice also
displayed more aggressive behavior (F (1, 28) = 7.53,
p < .01) and more nonagonistic social investigation (F
(1, 28) = 26.78, p < .0001) than A /] mice.

Significant main effects of housing on social-emo-
tional reactivity were also found. As shown in Figure 1,
levels of social-emotional reactivity were quite low in
group-reared A/J and C57BL/6] mice injected with ve-
hicle. Analysis of individual behaviors indicated that
isolation housing increased defensive posture (F (1, 28) =
6.48, p < .05), kicking (F (1, 28) = 11.09, p < .01), aggres-
sive behavior (F (1, 28) = 4.52, p < .05), and the fre-

1.4

C57BL/6J

quency (F (1, 28) = 16.86, p < .001) as well as the inten-
sity (F (1, 28) = 31.50, p < .0001) of escape behavior.
Some of these effects were strain specific, however, as
demonstrated by significant strain by condition interac-
tions. The increase in kicking after isolation housing
was observed in A/] mice only (F (1, 28) = 5.09, p <
.05), whereas the intensity of isolation-induced escape
was greater in C57BL/6] mice (F (1, 28) = 6.86, p < .05).
Finally, only isolated C57BL/6] mice showed aggres-
sive behavior (F (1, 28) = 4.52, p < .05).

Effects of Quinpirole on Social-Emotional Behavior
in Isolated Mice

Quinpirole markedly increased stationary reactivity in
isolated mice (F (3, 72) = 6.35, p < .001). As shown in
Figure 2, the effects of quinpirole on stationary reactiv-
ity in isolated animals were substantially more pro-
nounced in A/J mice than in C57BL /6] mice. Although
the strain by drug interaction was only marginally sig-
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* Figure 2. Effects of quinpirole on sta-
tionary (startle, kicking, vocalization,
defensive posture, and freezing), and
locomotor (jump and escape) reactivity
in isolated A/J and C57BL/6] mice
(mean and SEM); * p < .05.
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Table 1. Effects of Quinpirole (mg/kg) on Social-Emotional Behaviors in Isolated and Group-Housed A/] Mice

Isolated Group-Housed

Behavior 0 1.0 3.0 6.0 0 3.0 6.0
Startle 0.08 + 0.03 0.04 = 0.02 0.14 = 0.03 0.20 = 0.09 0.01 £ 0.01 0.04 = 0.02 0.16 + 0.04°
Kicking 0.20 = 0.05 0.78 * 0.09 0.30 = 0.10 0.39 = 0.11 0.00 = 0.00 0.03 = 0.02 0.17 = 0.06°
Vocalization 0.02 = 0.01 0.06 £ 0.04 0.17 = 0.08 0.06 = 0.04 0.00 = 0.00 0.00 = 0.00 0.03 = 0.02
Defensive posture 0.12 * 0.05 0.13 = 0.04 047 * 0.10° 0.36 = 0.07* 0.06 = 0.05 0.06 = 0.04 0.31 = 0.07°
Freezing 0.21 = 0.05 0.16 = 0.04 0.15 = 0.06 0.13 = 0.04 0.12 = 0.06 0.07 = 0.04 0.11 = 0.05
Jump 0.00 £ 0.00 0.00 = 0.00 0.10 = 0.04° 0.02 = 0.01 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
Escape 0.20 £ 0.08 0.13 = 0.04 0.33 = 0.10 0.10 = 0.05 0.02 = 0.02 0.02 + 0.01 0.04 = 0.03
Aggression 0.00 + 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
Social investigation 4913 0.2 x0.1° 0.1=x0.1° 02 *+0.1° 2310 0.5+ 03 0.0 £0.00

Note: Results are expressed as number of occurrences/ total interactions (mean and SEM), except for social investigation which represents total fre-
quency for the whole test.

“Different from 0 mg/kg (p < 0.05).

nificant (F (3, 72) = 2.23, p = .092), separate analyses
conducted for each strain indicated that stationary reac-
tivity was increased at all doses in A/] mice, whereas
C57BL/6] mice showed a slight, but significant, in-
crease only at the 3.0 mg/kg dose (v < .05). Quinpirole
significantly increased kicking (F (3, 72) = 9.16, p <
.001), defensive posture (F (3, 72) = 6.44, p < .001), and
vocalization (F (3, 72) = 3.33, p < .05) in isolated mice. A
marginal effect was also found for startle (F (3, 72) =
2.38, p < .077). Significant strains by drug interactions
were found for kicking (F (3, 72) = 5.73, p < .001) and
defensive posture (F (3, 72) = 6.44, p < .001). Post hoc
comparisons revealed that quinpirole increased these
behaviors in A/] mice only, the increases being signifi-
cant at 1.0 mg/kg for kicking and at 3.0 and 6.0 mg/kg
for defensive posture (p < .05). None of the specific be-
haviors subsumed under the category of stationary re-
activity was significantly altered by quinpirole in
C57BL/6] mice.

Quinpirole also altered the expression of locomotor
reactivity in isolated mice as indicated by a marginal
drug main effect (F (3, 72) = 2.54, p = .063). The two be-

haviors categorized as locomotor reactivity, namely es-
cape and jump, were differentially affected by the D,-like
agonist. Quinpirole had no effect on the frequency of
escape behavior in isolated mice but decreased the in-
tensity at 1.0 mg/kg (F (3, 72) = 4.94, p < .01). In con-
trast, jump was increased (F (3, 72) = 5.46, p < .01).
There was a significant strain by drug interaction for
this behavior (F (3, 72) = 4.46, p < .01), indicating that
the increase in jump was significant at 3.0 mg/kg in iso-
lated A/] mice and 6.0 mg/kg in isolated C57BL/6]
mice (p < .05). Finally, no aggression was observed in
isolated C57BL/6] mice administered quinpirole as re-
vealed by the significant strain by drug interaction (F (3,
72) = 7.75, p < .001). Social investigation was also re-
duced in both strains (F (3, 72) = 37.55, p < .0001), an ef-
fect that was more pronounced in C57BL /6] mice (F (3,
72) = 5.61, p < .01) given their higher levels under vehi-
cle condition. The mean and standard error of the mean
for each behavior are indicated in Table 1 (A/] mice)
and Table 2 (C57BL/6]).

In an independent experiment using isolated A /] mice,
we found that pretreatment with the D,-like receptor

Table 2. Effects of Quinpirole (mg/kg) on Social-Emotional Behaviors in Isolated and Group-Housed C57BL./6] Mice

Isolated Group-Housed

Behavior 0 1.0 3.0 6.0 0 3.0 6.0

Startle 0.01 = 0.00 0.01 £ 0.01 0.06 = 0.01 0.02 * 0.01 0.00 = 0.00 0.01 = 0.01 0.00 = 0.00
Kicking 0.04 £ 0.02 0.09 * 0.03 0.01 = 0.01 0.02 £ 0.01 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
Vocalization 0.11 £ 0.05 0.02 £ 0.01 0.18 £ 0.08 0.03 £ 0.01 0.00 = 0.00 0.01 £ 0.01 0.00 = 0.00
Defensive posture 0.17 £ 0.04 0.28 = 0.05 0.31 £ 0.06 0.22 £ 0.05 0.00 = 0.00 0.11 £ 0.05 0.06 £ 0.05
Freezing 0.01 £ 0.01 €.05 x 0.01 0.12 = 0.07 0.02 * 0.01 0.01 + 0.01 0.02 £ 0.01 0.00 = 0.00
Jump 0.00 = 0.00 €.00 = 0.00 0.03 + 0.02 0.09 + 0.03 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
Escape 0.42 * 0.08 C.28 £ 0.08 0.48 = 0.09 051 £0.13 0.00 *= 0.00 0.01 £0.01 0.00 = 0.00
Aggression 0.11 £ 0.04 .00 + 0.00 0.00 = 0.007 0.00 + 0.00° 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
Social investigation 11516 05*02 0.6 0.3 1.6 £1.3° 13.8 2.3 15+ 1.7 0.6 = 0.4"

Note: Results are expressed as number of occurrences/total interactions (mean and SEM), except for social investigation which represents total fre-
quency for the whole test.
“Different from 0 mg/kg (p < 0.05).
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Table 3. Effects of Raclopride Pretreatment on Quinpirole-Induced Social-Emotional

Reactivity in Isolated A /] Mice

Vehicle Raclopride (5 mg/kg)
+ +

Behavior Quinpirole (3 mg/kg) Quinpirole (3 mg/kg)
Startle 0.17 = 0.04 0.11 = 0.04
Kicking 0.25 = 0.06 0.15 = 0.06
Vocalization 0.01 £0.01 0.00 = 0.00
Defensive posture 0.24 = 0.06 0.01 = 0.01°
Freezing 0.15 + 0.02 0.34 = 0.04"
Jump 0.01 = 0.01 0.00 + 0.00
Escape 0.07 = 0.02 0.00 = 0.007
Aggression 0.00 = 0.00 0.00 = 0.00
Social investigation 013 £0.13 0.50 £ 0.27

Note: Results are expressed as number of occurrences/total interactions (mean and SEM), except for social
investigation which represents total frequency for the whole test.

“Different from vehicle + quinpirole (p < 0.05)

antagonist raclopride (5 mg/kg) blocked the effects of
quinpirole (3.0 mg/kg) on defensive pesture (F (1, 15) =
13.94, p < .01) and prevented the expression of escape
(F (1, 15) = 12.56, p < .01). This was paralleled by a sub-
stantial increase in freezing behavior (F (1, 15) = 14.61,p <
.01). The results are indicated in Table 3.

Effects of Quinpirole on Social-Emotional Behavior
in Group-Housed Mice

Quinpirole also increased social-emotional reactivity in
mice that had been reared in groups, but as depicted in
Figure 3, these effects were observed exclusively in A/]
mice and only at the highest dose (p < .05). As indicated
by the significant strain by drug interaction, quinpirole
increased stationary reactivity in group-housed A/]
mice (F (2, 29) = 16.90, p < .0001). Specifically, quin-
pirole increased startle (F (2, 29) = 11.83, p < .0001),
kicking (F (2,29) = 6.25, p < .01), vocalization (F (2,29) =

3.75, p < .05) and defensive posture (F (2, 29) = 4.75,
p < .05) in these mice (see Table 1). The only effect of
quinpirole in group-housed C57BL/6] mice was a sub-
stantial reduction in social investigation (F (2, 29) =
14.43, p < .0001), which reflected a marked decrease in
motor activity in this strain.

DISCUSSION

We examined the effects of the D,-like dopamine recep-
tor agonist quinpirole on social-emotional reactivity in
two inbred mouse strains. One important objective of
this study was to determine whether these effects could
be modulated by social experience. It was hypothesized
that mice reared in social isolation would be more sen-
sitive to quinpirole treatment and would show en-
hanced social-emotional reactivity when compared
with mice reared in groups. Furthermore, as motor ac-
tivity may be an important control for the assessment of
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drug effects on emotional behavior, the effects of quin-
pirole were tested in low (A/]) and high (C57BL/6]) lo-
comotor activity mice. Based on previous results (Gen-
dreau et al. 1997), the effects of quinpirole were expected
to be strain specific, modulating stationary forms of re-
activity (e.g., freezing, defensive posture, startle, kick-
ing) in A /] mice and locomotor forms of reactivity (e.g.,
escape, jump) in C57BL /6] mice.

The present results in drug-naive mice are consistent
with our previous findings as isolated A/J mice exhib-
ited freezing, startle, and kicking, whereas isolated
C57BL/6] mice showed escape and aggressive behav-
ior. In addition, as previously observed, levels of social-
emotional reactivity were very low in vehicle-treated
group-housed mice of both strains.

Quinpirole produced a substantial increase in sta-
tionary reactivity in isolated A/J mice, increasing star-
tle, kicking, vocalization, and defensive posture. Quin-
pirole alsc increased jump behavior in these mice. In
contrast, the D,-like dopamine agonist only marginally
enhanced locomotor reactivity (i.e.. jump) in isolated
C57BL/6] mice. Interestingly, opposite effects have
been previously observed with the selective D, agonist
SKF-81297, which substantially increased locomotor re-
activity (i.e., escape and jump) in isolated C57BL/6]
mice while having only minimal effects in isolated A/]
mice. In addition, the selective D, antagonist SCH-
23390 altered the expression of social-emotional reactiv-
ity in isolated C57BL/6] mice but had no effect in iso-
lated A/] mice (Gendreau et al. 1997). On the other
hand, the dopamine agonist dihydrexidine, which has
only a 10-fold selectivity for D, over D, receptors (Dar-
ney et al. 1991), increased reactivity in both strains. The
present findings with quinpirole support the hypothe-
sis that the effects of dihydrexidine on social-emotional
reactivity in A/J mice were the result of D,-like receptor
activation. These results thus indicate a strain-specific
role for D;-like and D,-like dopamine receptors in me-
diating isolation-induced social-emotional reactivity.

Quinpirole also increased stationary forms of reac-
tivity (i.e., startle, kicking, and defensive posture) in
group-based A/J mice. This effect was less pronounced
than in isolated A /J mice and was observed at the high-
est dose only. Similar to the present findings in A/]
mice, dopamine agonist-induced social-emotional reac-
tivity was also observed at lower doses and at higher
rates in isolated Institute for Cancer Research (ICR)
mice than in group-housed ICR mice (Lewis et al. 1994).
Other studies have demonstrated that isolated animals
were more sensitive to the motor stimulant effects of
apomorphine (Sahakian et al. 1975; Wilmot et al. 1984,
1986), amphetamine (Ahmed et al. 1995; Jones et al
1990; Lewis et al. 1990; Sahakian et al. 1975; Wilmot et
al. 1984, 1986), and cocaine (Phillips et al. 1994) than an-
imals reared in groups. The effects of amphetamine on
acoustic startle have been also shown to be more pro-
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nounced in isolated rats (Kokkinidis and MacNeill
1982). The shift to the left in the dose-response curve of
quinpirole in isolated A/] mice suggests that isolation
altered dopamine receptor function. This adaptive
mechanism may involve upregulation of dopamine re-
ceptors (Gariépy et al. 1995, in press; Guisado et al.
1980) and /or enhanced sensitivity to dopamine (Oehler
et al. 1987) and may take place at postsynaptic and/or
presynaptic sites (Jones et al. 1992). The dopaminergic
systems thus appear to be highly sensitive to experien-
tial input and may contribute to the heightened emo-
tional reactivity typically observed in isolated animals
(Gariépy et al. 1996).

It has been reported previously that quinpirole sub-
stantially increased levels of social-emotional reactivity
in group-housed C57BL/6 mice (Cabib and Puglisi-
Allegra 1989; Puglisi-Allegra and Cabib 1988). Specifi-
cally, in group-housed C57BL/6 mice exposed to a non-
aggressive, untreated male mouse of the same strain,
quinpirole was found to increase the duration of escape
and defensive posture, and to decrease social investiga-
tion. This was shown over a wide dose range from 0.1
to 5 mg/kg. In the present study, however, quinpirole
at both doses tested (3 and 6 mg/kg) had no specific ef-
fect on social-emotional reactivity but markedly re-
duced motor activity in group-housed C57BL/6] mice.
Similar motor depressant effects have been reported for
quinpirole in this strain at doses up to 32 mg/kg (Mid-
daugh et al. 1996; Shannon et al. 1991).

The contradictory results concerning the effects of
quinpirole in group-housed C57BL/6] mice are difficult
to reconcile, although some methodological differences
exist between the studies. For one, mice were 3 to 4
weeks younger in our study. Not only have the effects
of dopaminergic ligands on motor behavior been found
to be age dependent (Van Hartesveldt et al. 1994) but
the expression of social behavior has been also shown
to change over ontogeny, with an increasing probability
of aggression from either the subject or the mouse part-
ner as the animals grow older (Cairns et al. 1985). Im-
portantly, in this study, C3H/HeNH mice served as part-
ners, whereas C57BL/6 mice were used in the other
studies (Cabib and Puglisi-Allegra 1989; Puglisi-Allegra
and Cabib 1988). It is probable that C57BL/6 mice, serving
as partners, initiated more social contact and were more
aggressive, thus providing more overall stimulation than
the moderately active and less aggressive C3H/HeNH
mice. Also in the present study, both the subject and the
partmer were equally habituated to the testing chamber,
whereas in the other studies only the subject was habitu-
ated, creating a “resident-intruder” situation more likely
to induce agonistic interchanges. More intense and possi-
bly more threatening stimulation increases the probability
that emotional behavior will be displayed, especially
once the central pathways associated with these behav-
iors have been activated by dopamine agonists.
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The present results indicate important strain differ-
ences in the effects of quinpirole on social-emotional re-
activity. As A /] mice were more sensitive to the stimu-
lant effects of quinpirole, prior reports indicated that
A/] mice were also more sensitive than C57BL /6] mice
to the convulsant effects of the inverse benzodiazepine
receptor agonist B-CCM (Mathis et al. 1994). Con-
versely, diazepam increased light-dark transitions in
C57BL/6] mice but not in A/] mice (Mathis et al. 1994,
1995). A/J and C57BL/6] mice also exhibit important
differences in the expression of motor-emotional behav-
ior. A/] mice are less active (Messeri et al. 1972) and
performed less light-dark transitions (Mathis et al. 1994,
1995) than C57BL/6] mice, suggesting that A/] mice are
more “emotional” than C57BL/6] mice. Both strains,
however, exhibited preference for the closed arms of
the elevated plus-maze (Trullas and Skolnick 1993).
Thus, both genetic and contextual factors can influence
the expression of emotional behavior as well as the ef-
fects of drugs on these behaviors.

It has been reported that C57BL/6Cr mice (Charles
River Laboratories) have higher D,-like receptor densi-
ties in lateral striatum (35%) and the accumbens (38%)
versus A /] mice, with no difference in the substantia ni-
gra, pars compacta, or the ventral tegmental area (Kanes
et al. 1993). As microinfusion of quinpirole to the nu-
cleus accumbens induces hypolocomotion (Mogenson
and Wu 1991; Van Hartesveldt et al. 1992), differences
in Dy-like receptor functions in this brain area may be,
at least in part, responsible for the depressant effects of
quinpirole on motor behavior in C57BL./6] mice. On the
other hand, the increase in social-emotional behavior
after quinpirole administration may irvolve Dj-like re-
ceptors located in the amygdala, a structure having im-
portant dopaminergic connections with the olfactory
tubercle and nucleus accumbens (Amaral et al. 1992;
Louilot et al. 1985). The central nucleus of the amygdala
contains a relatively high number of D,-like dopamine
receptors (Murray et al. 1994; Scibilia et al. 1992) and
has been shown to mediate fear-related responding,
more particularly conditioned freezing behavior (Davis
etal. 1994; Le Doux et al. 1988). Lesions of the amygdala
have been found to reduce conditioned and uncondi-
tioned freezing (Blanchard and Blanchard 1972; Kim et
al. 1993; Maier et al. 1993). Conversely, electrical or
pharmacological stimulation of the amygdala has been
found to induce escape (Hilton and Zbrozyna 1963;
Ursin and Kaada 1960), rage reaction (Reis and Gunne
1965), and aggressive behavior (Adamec 1990).

The present findings suggest that dopamine plays an
important modulatory role in the expression of social-
emotional reactivity. As seen in the present study, a
wide variety of behavioral responses including freez-
ing, startle, defensive posture, vocalization, kicking, es-
cape, and attack can be produced in response to social
stimuli. As pointed out previously (Gendreau et al.
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1997), activation of the dopaminergic system increases
the probability that lower motor forms of emotional re-
activity (e.g., freezing, startle, kicking) would be re-
placed by higher motor forms of reactivity (e.g., escape,
jump). It has been shown previously that D;-like recep-
tor activation dose-dependently increased escape and
jump behavior in isolated C57BL/6] mice, whereas
blockade of this receptor subtype increased freezing
and kicking (Gendreau et al. 1997). Similarly, as shown
in the present study, quinpirole increased kicking at a
lower dose (1 mg/kg) and jump at a higher dose (3 mg/
kg) in isolated A/] mice. Quinpirole did not affect the
frequency of freezing, however, but a lower dose of the
D,-like dopamine agonist could have been effective in
increasing this form of reactivity. In the present study,
freezing behavior was defined as a reduction in overt
motor behavior during mild contact or investigation by
the conspecific. It was characterized by an abnormally
rigid posture and was typically accompanied by the
flattening of the ears, the closing of the eyes, and occa-
sionally by crouching. Dopaminergic systems have
been hypothesized to play an indirect role on freezing
by regulating flight systems (Blackburn et al. 1992). By
reducing motor function, low doses of Dylike dopa-
mine agonists therefore increase the probability that
freezing may be displayed. Similar effects have been
obtained with administration of dopamine antagonist
(Blackburn and Phillips 1990; Gendreau et al. 1997). In
the present study, pretreatment with raclopride in-
creased freezing and abolished escape in isolated A/]
mice, an effect likely due to the D,-like dopamine antag-
onist alone. Although higher doses of dopamine ago-
nists are expected to induce higher motor forms of reac-
tivity, replacing freezing and other stationary forms of
reactivity, quinpirole up to 6 mg/kg, did not reduce
freezing in isolated A /] mice. Similar observations have
been made in mice characterized by high levels of social
freezing (Gariépy et al. 1995; Lewis et al. 1994). These
results indicate a certain independence between flight
and freezing systems.

In isolated C57BL/6] mice, administration of quin-
pirole prevented the expression of aggressive behavior.
As with freezing, dopamine likely plays an indirect role
in aggression. Indeed, suppression of aggressive behav-
ior has been observed with dopaminergic ligands at
doses that either facilitated or depressed overt motor-
emotional behavior (Baggio and Ferrari 1980; McMillen
et al. 1989; Miczek et al. 1994). Whereas the serotonergic
system has been linked more directly to the expression
of aggressive behavior (Bell and Hobson 1994; Sanchez
et al. 1993; Valzelli and Bernasconi 1979), the dopami-
nergic system appears to be critical in conditioned
avoidance behavior (Blackburn et al. 1992) as well as in
avoidance behavior elicited by novel stimuli (Bardo et
al. 1996; Hooks and Kalivas 1995). Consistent with this
hypothesis, quinpirole markedly reduced social investi-
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gation in isolated and group-housed mice of both
strains. Similar observations have been reported with
selective D; and D; dopamine agonists at doses that ei-
ther increased or reduced overt behavioral activation
(Gariépy et al. 1995; Gendreau et al. 1995, 1997; Lewis et
al. 1994).

In this regard, it is interesting to note that although
quinpirole decreased motor activity in C57BL /6] mice,
no increase in freezing or decrease in the frequency of
escape was observed. In addition, quinpirole induced
jump behavior. These findings confirm other reports in-
dicating that the motor depressant effects induced by
D,-like dopamine agonists can be overcome by increas-
ing the levels of external stimulation (e.g., electrical
shock), which results in an enhanced emotional re-
sponse (Franklin and Tang 1995; Blackburn and Phillips
1990; Blackburn et al. 1992). An important feature of the
present study is that emotional reactivity was not asso-
ciated with painful or aversive experience (e.g., shock,
repeated defeat) and was not generated by clearly
threatening stimuli (e.g., predator, aggressive conspe-
cific). Instead, the threshold for emotional responding
was lowered by social isolation and high levels of emo-
tion reactivity were induced by mild social contact pro-
vided by an unfamiliar and nonaggressive male mouse.
As these animals exhibit an exaggerated emotional re-
sponding to what typically should be nonthreatening
social stimuli, this model may be more exemplary of
anxiety than fear and may be highly relevant to under-
standing the neurobiology of anxiety-related behaviors
(Parker and Morinan 1986).

Although quinpirole has been reported to have sig-
nificant affinity for D; dopamine receptors (Gehlert et al.
1992; Sokoloff et al. 1990), a receptor subtype largely
localized to limbic structures (Bouthenet et al. 1991;
Schwartz et al. 1993), there has been so far no consensus
regarding the selectivity of quinpirole for D; over D,
dopamine receptors. Previous studies in isolated C57BL/
6] mice, however, have shown that the putative D,
dopamine agonists 7-OH-DPAT and PD128907 mark-
edly increased stationary reactivity at low doses and lo-
comotor reactivity at higher doses (Gendreau et al. 1995).
These results suggest a different profile for quinpirole
and the two D; dopamine agonists in mediating social-
emotional reactivity in C57BL/6] mice. Similar conclusions
have been reached regarding the effects of quinpirole
and 7-OH-DPAT on cross-sensitization to apomorphine
and cocaine in Wistar rats (Mattingly et al. 1993, 1996).

In concert with other findings in various mouse
strains (Cabib and Puglisi-Allegra 1989; Gao and Cutler
1993; Gariépy et al. 1995; Lewis et al. 1994) and in non-
human primates as well (Crowley et al. 1974; Schlem-
mer and Davis 1981), the present results thus indicate
an important role for dopamine system in modulating
anxiety-like responses to social stimuli. Anxiogenic
properties have also been reported for the D,-like ago-
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nist RU-24926 (Simon et al. 1993) and the dopamine up-
take inhibitors amphetamine and GBR 12783 (Shimada
et al. 1995; Simon et al. 1993, 1994) in nonsocial test con-
ditions (e.g., elevated plus-maze, light-dark transition
test), whereas the D,-like receptor antagonist sulpiride
had anxiolytic-like effects in these tests (Costall et al.
1987; Pich and Samanin 1986; Rodgers et al. 1994).

Several studies, however, have failed to demonstrate
the anxiogenic effects of dopamine agonists (Hjorth et
al. 1986, 1987; Rodgers et al. 1994, 1996) or the anxiolytic
effects of dopamine antagonists (Cole and Rodgers
1994; Shimada et al. 1995) in nonsocial test conditions.
As demonstrated in this study, the effects of drugs on
emotional behavior are influenced by genetic and expe-
riential factors as well, making generalization between
strains, species, and housing conditions, problematic. In
addition, the propensity to be “emotional” in a nonso-
cial context has been shown to be a poor predictor of
the level of emotional reactivity exhibited in response to
social stimulation (Berton et al. 1997; Gariépy et al.
1988). Accordingly, great care must be also exercised in
generalizing drug effects on emotional behavior elicited
by nonsocial versus social stimuli.
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